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A method is developed for the calculation of the ground-state melting 
curves 070 vs. T) for random, infinite heteropolymers. Here 70 is the 
ground-state value of the fraction of melted links ~ (7o ~ ~ in the strong 
cooperativity approximation). It is shown that the differential melting 
curves (d~/dT vs. T) can have a fine structure in the form of several peaks 
on the bell-shaped main curve. Positions, magnitudes, and widths of these 
peaks are estimateds The "accidental" fine structure of melting curves, 
which is caused by a finite length of the polymer, is briefly discussed. 

KEY WORDS: Helix-coi l  transition ; heteropolymers; Ising model ;  
melting ; random walks. 

1. I N T R O D U C T I O N  

The melt ing of  polynucleotides has been a subject of  interest over the last 

decade. A detailed analysis of  various models describing this process can be 

found  in review articles, m2) In  the simplest case of circular polymers,  the 

melt ing is described by a one-dimensional ,  two-component  Ising model  with 

the effective Hami l ton ian  (3~ 

H = H '~ + �89 ~ [ - ( i  - %)U(a~:) + �89 - ~r~%+x)] (1) 
k = l  

Here H n is the polymer energy in the completely helicaI state; a~, a2 .... , a ~  
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392 A. Vilenkin 

is a fixed base pair sequence, which we shall assume to be random; ae = 1 
and ak = 2 stand for A - T  and G-C  pairs, respectively; cr~ = 1 if the kth link 
(base pair) is in the helical state and ak = - 1 if it is melted; U(1) - U1 and 
U(2) ~- - U2 are the (free) energy differences between the helical and melted 
states for links of type 1 and type 2, respectively; V/2 is the "surface"  
energy arising at the phase boundaries. U1 and U2 are functions of  tempera- 
ture. A linear temperature dependence is usually assumed, but we shall not 
specify the form of U~(T). 

The values of  U~ and U2 can vary widely with change of  environmental 
conditions. (4) On the other hand, the surface energy V and the melting 
temperature Tm are relatively independent of  environment (in terms of  
percentage), V being much larger than Tin. The ratio 

T~ V << 1 (2) 

is a small parameter of  the problem. This inequality means that the tempera- 
ture is low and thus the polymer is close to its ground state, i.e., to the state 
minimizing the Hamiltonian. (5-7) This state, however, changes with tempera- 
ture because the parameters U~ and U2 are temperature dependent. 

The polymer microstate is completely characterized by indicating the 
ends of all melted sections. The necessary and sufficient conditions (6'7) 
determining the melted and helical sections in the ground state are easily 
formulated in terms of  the function 

M 

h(M) = ~,  U(a~) (3) 
k = O  

where the origin (k = 0) can be chosen arbitrarily. Each polymer segment 
(~,v) can be characterized by the quantity h(tz, v )=  h ( v ) -  h(tz)= 
K U 1 -  LU2, where K and L are the numbers of  component-1 and 
component-2 links in the segment. A segment (#,, v) is a melted section if  
(1) it has h(/z,v) /> V, (2) it has no segments with h < - V  inside it, 
(3) h(/z) ~< h(M) <~ h(v) for/z < M < v. A segment (/z, v) is a helical section 
if (1) it has h(/~, v) < - V, (2) it has no segments with h /> V inside it, 
(3) h(v) < h(M) < h(t~) for t* < M < v. It is easily verified that any violation 
of these requirements increases the polymer energy. 

A new melted section can appear in the ground state in one of  three 
possible ways: (A) it can appear as a whole (an isolated newborn section), 
(B) it can form a left-hand or right-hand part of  an already existing melted 
section, (C) it can connect two already existing melted sections. The newborn 
sections of types (A)-(C) satisfy the following conditions: (A) KU1 - LU2 = 
V, (B) KU~ - LU2 = 0, (C) KU~ - LU2 = - V, respectively. The fraction of  
melted links in the ground state of  an infinite heteropolymer, r/0(T), has 
jumps at all points satisfying one of the conditions (A)-(C) with arbitrary 
integers K, L />  0. (8) It is easily seen from the equation for condition (B) that 
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70 has a jump at every rational value o f  the ratio UllU2. Physically, there is 
no difference between rational and irrational numbers.  I f  UI/U2 = r/s, 
where r and s are integers and r/s is an irreducible fraction, then one expects 
that  the jumps o f  To become arbitrarily small as r, s ~ ~ (with finite r/s). 4 
The maximal jumps of  To corresponding to sections o f  type (B) are expected 
at the minimal values o f  r and s. One can easily convince oneself that  the 
maximal jumps corresponding to sections o f  type (A) occur when 
KU~ - LU2 = V a n d  at the same time 5 the ratio U1/U2 is equal to the ratio 
o f  two small integers 6 [and a similar condit ion for  sections o f  type (C)]. 

The jumps of  70 correspond to the peaks on the differential melting curve 
(d~/dTvs. T). 7 These peaks form what  we shall call the intrinsic fine structure 
o f  melting curves, as distinguished f rom the "acc iden ta l "  fine structure, 
which is caused by the finite length o f  the polymer.  (9~ 

To explain the origin o f  the intrinsic fine structure, let us consider the 
newborn  sections o f  type (B) in some more  detail. I f  Uz/U2 = 1, then the 
equat ion o f  condit ion (B) gives K = L. The possible values o f  K and L are 
(K, L) = (1, 1), (2, 2),.... The lengths o f  the corresponding newborn  sections 
range f rom K + L = 2 to infinity. In  the case U~/U2 = 99/100 we have 
(K, L) = (100, 99), (200, 198) ..... the minimal length being 199. We see that  
the " d e n s i t y "  o f  possible pairs (K, L) in the first case is much  greater than 
that  in the second case. In  other words, the probabil i ty o f  a newborn  section 
o f  type (B) in the case U1/U2 = 1 is much greater than that  in the case 
UI/U2 = 99/100. Generally, one expects that  this probabil i ty has maxima at 
the values o f  temperature at which U~/U2 is equal to the ratio o f  two small 
integers. The existence o f  such maxima explains the intrinsic fine structure o f  
melting curves. Strictly speaking, our  discussion corresponds to the low- 
temperature limit (T << U1, (-/2, V). I f  T > U1, U2, then the funct ion ~7o(T) 
with multiple sharp peaks on it gives, so to say, a " b a r e "  melting curve. On  
the " d r e s s e d "  melting curve ~(T), all the peaks acquire a finite width, so that  
they overlap with each other and only the largest peaks (if any) can survive. 

It can be shown that A~7o is an exponentially decreasing function of r + s. (15) 
5 It is not necessary that both conditions be satisfied exactly at the same temperature. 

The quantity UI/U2 has only to be close enough to the ratio of two small integers when 
K U 1  - L U2 = V (see Section 5). 

6 Obviously, only few (if any) such points can occur in the melting interval. If there are 
none, one can adjust the sodium ion concentration (see Ref. 4) so that conditions for 
principal peaks of types (A) or (C) are satisfied for at least one point. 

7 The physical origin of the fine structure of melting curves in the case of finite sequences 
was first explained by Azbel' as related to the coiling of the ground-state segments 
(ReL 6; see also Refs. 10 and 11). Prof. Azbel' had completed this work and reported it 
at the Moscow Seminar on Condensed State before the previous paper of the present 
author (8> was submitted for publication. I am grateful to Prof. Azbel' for bringing this 
fact to my attention and regret that a reference to his work is missing in Ref. 8. 
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In this paper the melting of  random heteropolymers is studied, using the 
method developed in Ref. 8. 8 A system of equations is derived for the calcula- 
tion of the fraction of  melted links in the ground state, Vo, and its jumps, A%. 
To estimate the magnitudes and the widths of  the peaks on the differential 
melting curves, these equations are solved in the simplest case U1 = U2. In 
the case of  a finite heteropolymer, the fluctuations of  v0 corresponding to the 
accidental fine structure are estimated. The possibilities of  experimental 
detection of  the intrinsic fine structure are briefly discussed. 

2. G E N E R A L  F O R M U L A S  

Assuming that U1/U2 is a rational number, we have U1 = rU and 
U2 = sU, with r and s integers. It is convenient to introduce a dimensionless 
parameter  N = V/U and a dimensionless function n(M) - U- lh (M) .  This 
function can assume arbitrary integral values. For a polymer with a random 
sequence of  links of  the two types, the graph of  n(M) represents a Brownian 
motion of  a "part ic le ,"  n playing the role of  coordinate and M the role of  
time. The "par t ic le"  steps r units up with probability ~1 and s units down 
with probability ~2 = 1 - ~1, where ~1 and ~2 are the concentrations of  
links of  the first and of the second type, respectively. The fraction of melted 
links in the ground state, 70, can be expressed in terms of  the probabilities of  
certain Brownian trajectories of  the "particle. ''C7,8) 

Let us denote by ~m + ( ~ - ,  ~ - ,  qk, q0) the probability that the "pa r -  
ticle," starting from the point n = 0, will for the first time get to the point 
n = N + m (n < - N ;  n < - N ;  n = k; n = 0) without previously leaving 
the domain 0~<n~< N -  1 ( - N ~ < n ~ < 0 ;  - N ~ < n ~ <  1; - N ~ < n ~ < 0 ;  
- N ~< n ~< - 1). The parameters m and k take values from 0 to r - 1 and 
f rom 1 to r, respectively. For  simplicity, the definitions above are given for 
the case of  integral N. I f  N is not an integer, then the probabilities ~m § 
ought to be replaced by 

~,~+(N) :-+ ~,~+([N] + 1), ~ - ( N ) - - > ~ - ( [ N ] )  
(4) 

~ - ( N )  -+ ~ -  ([N]), q,,(N) --+ qk([N]), qo(N) -+ qo([N]) 

where [N] is the whole part  of  N. The probabilities ~ - ,  ~ - ,  qk, and qo are 
connected by the relations 

~ -  = 1 - ~ q,, ~ - ( 1  - qo) = ~ -  (5) 
I = 1  

which can be proved proceeding from the definitions given above. 

8 It should be mentioned that this method can be used for studying disordered magnetic 
chains as well (see Ref. 12). 
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Each melted section has a segment of type ~,~ + at the beginning, then a 
number of segments of types qk, and then a number of segments of type qo .(8) 
Such a section can be characterized by the numbers m, n~, n2 .... , n,, no, where 
nk and no are the numbers of segments of types qk and qo, respectively. The 
probability that an arbitrarily chosen link of  the chain is the beginning of  
such a section is given by 

~(m,  n~, no) = ~m+(~-)2qg o H q~ n, ! n,! (6) 
2 = 1  \ / = i  / 

The average length of such a section is 

L(m, n~, no) = L,n + + ~ nl, lk + nolo (7) 
h : = l  

where Zm § l~, and lo are the average lengths of the segments corresponding to 
the probabilities ~ +, qg, and qo, respectively. The factor ( ~ =  ~ n3 l / ~ =  ~ n~! 
in Eq. (6) takes account of  all possible transpositions of  segments with 
different values of k. 

The fraction of  melted links in an infinite polymer is given by 

Zlo = ~ ~(m,  nk, no)L(m, n~, no) (8) 
m = 0  n/~=0 no=O 

Using Eqs. (6) and (7), we can rewrite Eq. (8) in the form 

~7o = (~ - )2  ~ ~m + L m +  l~qk 0 m = o k =~ ~ + loqo qb(q)qbo(qo) (9) 

where 

O(q) . . . .  n~ ll--I q~'l (10) 
nl=o , o i = l n i ! )  

~o(qo) = ~ q~o = (1 - qo) -1 (11) 
no=O 

We shall prove that (8) 

Indeed 

(1_ 

qb(q) = 1 - -  qe 
k = l  

= E E nlln2!. . .n~! q~lq'~2"''q~" 
n = 0 { ~ n h :  = n )  ~ 

nl=o n,=o~xg=l "k=lnklJ 

(12) 
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Substituting Eqs. (11) and (12) in Eq. (9) and using the identities (5), we 
obtain the final expression for 7/o: 

~7o= ~ ~ +  ~ - L ~ + ( 1  - q o )  4 q k + ~ - q o l o  
m = 0  k=1  

(13) 

Now let us calculate the number of links that change their states at 
certain values of r, s, N. Suppose that N is an integer (N can be made an 
integer with whatever accuracy by a suitable choice of  r and s). Then the 
number of links in the newborn sections of types (A)-(C) is given by, 
respectively, 

A~TA = ( ~ - ) ~ o  + ~ qon(Lo + + nlo) = (g~-)2~o+[(1 - qo)Lo + + qo/o] (14) 
~ z = 0  

A~B = ( ~ - ) 2 ~ +  ~ qr~+.(m + n)lo = 2(~-)2~+qolo  (15) 
r r4n  = 0 

A~c = (~+)2~o- ~ qo"(Lo- + nlo) = (~+)2~o-[(1 - qo)Lo- + loqo] (16) 

Here ~ +  (~o-) is the probability that the "particle," starting from the point 
n = 0, will for the first time get to the point with n > N (n = - N )  without 
previously leaving the domain 1 ~< n ~< N ( - N  + 1 ~< n ~< 0), 

~ +  = ~+(1  - qo) -1 (17) 

Lo- is the average length of the segment corresponding to the probability ~o-.  
The g~o- and Lo- can be obtained from ~o + and Lo + by interchanging ~1, ~2 
and r, s: 

~o-(,~1, ~ ,  r, s) = ~ o + ( ~ ,  ,~1, s, r )  

Lo-(u~a, ~2, r, s) = Lo+(~z, ~1, s, r) 
(18) 

The total jump of rio is given by 

A,qo _- A~A + A~B + A~c (19) 

A system of equations for the probabilities Nm +, ~ - ,  ~ - ,  and q~ has 
been determined in Ref. 8. In fact, there is a simpler system of  equations that 
is equivalent to the initial system. These equations, together with equations 
for the average lengths, are given in the next section. 
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3. E Q U A T I O N S  FOR P R O B A B I L I T I E S  A N D  
FOR A V E R A G E  L E N G T H S  

The probabilities ~m + and the average lengths Lm + can be found from 
the equations 

CM,n = ~lCM-l , . - r  "3L r162 (0 ~< n ~< N -  1) (20a) 

CM,~ = 0 (n ~< --1; n /> N) (20b) 

60,. = 50,. (20c) 

~m + = ~ ~ CM.U+m-, (0 < m <<. r -  1) (21) 
M = O  

Lm + = (~i/~m +) ~ (M + 1)r (22) 
M = O  

where 3m,. = 1 ifrn = n and 3m,. = 0 ifrn # n; CM,. is the probability that 
the "part icle" has coordinate n at time M; and M and n are integers. Equa- 
tions (20b) and (20c) play the role of boundary and initial conditions for 
Eq. (20a). It is easily verified that Eqs. (20) are equivalent to the more 
complicated system used in Ref. 8. 

Equations for qk, lk: 

r  = ' ~ r  1,.- ,  + ~ r  1,. +s 

CM,. = 0 

f iO,n = (~0,7/. 

M = O  

Ik = (,z'l/q~) ~ (M + 1)r 
M = 0  

Equations for q0, Io: 

CM,. = 0 

qo = ~ ~ 4,~,-~ 
M = O  

to = (~dqo) ~ (M + 2)r 
M = O  

( - N  ~< n ~< 0) (23a) 

(n>~ 1; n~< - N - l )  

(23b) 

(23c) 

(k = 1,..., r)  (24) 

(25) 

( - N  ~< n ~< - 1 )  (26a) 

(n>~O, n < ~ - N - 1 )  

(26b) 

(26c) 

(27) 

(28) 
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Similar equations can be written for ~ -  and ~ - .  However, this is not neces- 
sary: ~ -  and ~ -  can be found from the identities (5). 

Equations (13) and (20)-(28) can be used for the direct calculation of 
melting curves on computers. Of course, in this case the summation over M 
in Eqs. (22), (24), etc., has to be cut off at some value Mo which is much 
larger than the corresponding average length. 

4. C A L C U L A T I O N  OF T H E  A V E R A G E  L E N G T H S  

To estimate the jumps A%, we shall determine the average lengths Lo, 
/o, and ll in the simplest case, U1 = U2 = U, or r = s = 1. In this case Eqs. 
(20)-(22) for ~m + and Lm + take the form 

4M,. = ~ 4 M - ~ , . - I  + ~24M-~..+~ (0 ~ n <~ U -  I) (29a) 

~bM..=0 (n i> N, n~< --1) (29b) 

4o,. = 3o.. (29c) 

~o += ~ ~14M,N-1 (30) 
M = I  

Lo + = (~/~o § ~ (M + 1)4M,N-~ (30 
M = I  

Let us introduce the notations 

4. = ~ 4M,. (32) 
M = I  

~b, = ~ (M + 1)4M.n (33) 
M = I  

The equations for 4, can be obtained by summing the left- and right-hand 
parts of Eqs. (29a)-(29b) over all M from M = 1 to infinity: 

4, = ~ 4 , - 1  + a,24,+~ (2 ~< n ~< N -  1) (34a) 

41 = ~ 4 o  + ~242 + ~x (34b) 

40 = ~24~ (34c) 

4.  = 0 (n 1> N) (34d) 

The general solution of Eq. (34a) is 

4,, = AI + A 2 X  n (1 ~ n ~< N) (35) 

where Az and Az are arbitrary constants, X = ~x/~2- Substituting Eq. (35) 
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into the boundary conditions (34b) and (34d) and using Eq. (34c) to eliminate 
~0, we obtain 

Aa + A2X -a = 1/oJ1, A1 + A 2 X  N = 0 (36) 

The solution of this system is 

A i  a = ~x(1 - X-N-x); A~ x = - ~ 2 ( X  u+a - 1) (37) 

and thus 

~o + = ~16N-1 = (1 - X-0/(1  - X -N-x) (38) 

To find the equations for ~b., let us multiply Eqs. (29a)-(29c) by M + 1 
and then sum over M from M = 1 to infinity. We get 

~b. = ~a~b._x + ~2~b.+x + ~. (2 ~< n ~< N -  1) (39a) 

,t/'a = ~ b o  + "*2d, b2 + q~l + ~x (39b) 

$0 = ~2~,ba + ~o (39c) 

~b~ = 0 (n /> N) (39d) 

The general solution of  Eq. (39a) is 

d/,, = Ca + C2X '~ + n(Da + D2X n) (1 ~< n ~< N) (40) 

where Ca and (72 are arbitrary constants and 

Da = Za(u~a - ~2)-~; D2 = - Z z ( ~ l  - ~2) -a (41) 

Substituting Eq. (40) into the boundary conditions Eqs. (39b)-(39d), we find 
the equations for (71 and Cz: 

(71 + C2X N + N(Da + D z X  N ) = O  

CaX + C2 = Aa + A2X  + D1 + D2X + ~ a  (42) 

and after an elementary calculation we get 

~1 X +  1 [ 
r~ = o00 + -  ~bN-1 = (X - 1)-0 -~ ~()-N-a IN(1 + X - N - z ) - 2 1 x X i  u] 

(43) 

The average lengths lo and 11 can be determined in a similar way. Omit- 
ting the calculations, we show only the final results: 

2 XN+2 -- X-N -- (N + 1)(X 2 -- 1) 
lo = ~-~ 25 1)-0- - ~ - z - ~ u  - 1) (44) 

X N + 2 -  X - N - ( N +  1)(X 2 -  1) 
/ 1 = 2  ( X -  1 ) ( 1 -  X - N - O ( X  N + 2 -  1) + 1 (45) 
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The quantities lo and ll satisfy the identities 

l l  = ~ f l q o q z l o  + 1; lo(N + 1) = I~(N) + 1 (46) 

which follow f rom their definitions. 
The expressions for  the average lengths, Eqs. (43)-(45), are rather 

cumbersome.  To have an idea o f  the order  o f  magnitude o f  Lo +, lo, and ll,  
let us find their values in the case ~1 = ~2 = 0.5, X = 1 : 

Lo + = N ( N  + 2)/3; 10 = { (N + 2); /1 = ~N + 1 (47) 

Finally, we can find the average lengths o f  the three types of  newborn 
sections La ,  L~, and Lo:  

LA = A~TA/~A = L o  + + qo(1 - qo)-~lo (48) 

where ~A is the probabil i ty o f  a newborn section o f  type (A): 

~A = (~- )2~o+ ~ qo" = ~ # - ~ - ~ o  + (49) 
n = 0  

Similarly, 

LB = /o; Lc = Lo-  + qo(1 - qo)-l lo 

In  the case r = s = l, ~ol - ~2 we get 

L.~ = Lo = (N + 2)2/3; 

(50) 

LB = 2(N + 2)/3 (51) 

5. C A L C U L A T I O N  OF "~o 

N o w  we can calculate the fraction o f  melted links in the ground state in 
the c a s e r = s =  1: 

To = ~ o + [ ~ - L o  § + (1 - qo)qll~ + ~-qol0]  (52) 

Using the identities 

(t - qo)ql = ~1;  ~ l la  - qoqJo = u,~ (53) 

we find 

To = ~ o + ( # - L o  + + qolo + ~ )  (54) 

The probabilities ~o +, etc., have been found in Ref. 8: 

1 - X - 1  X -  1 1 - X -N 
'~~ = t - X - N - l ;  ~ -  ~ X N+2 - 1 '  qo = ~2 1 - X -N-1 

1 - x - N - 1  a) (55)  
ql = 1 - X - N - 2 ;  ~ -  = X T M  - 1 
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Substituting Eqs. (43)-(45) and (55) in Eq. (54), we get 

~z(1 - X -~) I2X2(X~r - 1) - N ( X  2 - 1) ] 
7/~ 1 - X -N-~ [ ~X - - ~  - D ( X - - i )  + X~ (56) 

An approximate expression for ~/o near the melting temperature for arbitrary 
values of  Uz and U2 can be found by substituting X = e ~ where 
0 = u ~ U ~ -  u~2U2, ~ = U~U2/2 (see Ref. 8 for justification). Near the 
melting temperature [0[ << U~, Uz; IX - 11 << 1 ; and 

1 - X - N - N ( X -  1)X -N 
7/0 z (1 - X-N) ~ ( I X -  1[ << 1) (57) 

o r  

e ~ - 1 - OV/fl (58) 
71~ = 4 sh2(OV/2fi) 

which coincides with the expression obtained by Vedenov and Dykhne. (13~ 

6. THE FINE STRUCTURE OF MELTING CURVES 

From Eqs. (14)-(16) and (43)-(45) we can find the magnitudes of the 
jumps A~A, AT/B, A*/c in the case r = s = 1, N = [N]. The expressions one 
obtains are rather involved, but they are essentially simplified if ~1 = u~2 = 
0.5, X = 1: 

N ( N  + 4) . 2 U (59) 
A~/A = A~Tc = 6(N + 1)2(N + 2)' A~B = 3 (N + 1)(U + 2) 2 

According to the discussion in the introduction, Eq. (59) gives the order of  
magnitude of the maximal possible jumps of~7o. If  N >> 1, which is usually the 
case, we can write 

2x~A = A~/o ~, U / 6 V ;  A~B ~, 2 U 2 / 3 V  2 (60) 

It is expected that A~/ at U1 = U2 gives the order of magnitude of the 
largest peaks on the differential melting curve. 

New sections in the ground state appear "instantly." Actually, however, 
the melting of  a section of  length L is spread over an interval m 30 ~ 4 T / L .  

If  we assume a linear dependence of  U~ and U2 on temperature, 

U~ = a ( T -  T1), U2 = - a ( T -  7"2) (61) 

where T1 and T2 are the melting temperatures of pure component-1 and 
component-2 polymers, then ~ 0 = a ( T  - Tin) and 

3T  = 4 T / a L  (62) 

9 T m =  ,~1T1 + ,o2T2 is the melting temperature. 
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The widths of the peaks corresponding to the three types of sections are 
of  order 

8TA = 3Tc ,~ 12TU2/aV z = 4 T A T / V  (63) 

3TB ,.~ 2 T A T / U  (64) 

where AT = 3 U2/a Vis  the total width of the melting curve. (13'2~ For  a peak to 
be observable, it is necessary that 3T < AT. 

For  the standard values of  the parameters U, V, and T, U / T  ~ 2/3, 
V / T  ~ I0, we get 3TA ~ 3Tc ,~ 0.4AT, 3TB ~ 3AT. Thus, only the peaks 
corresponding to A and C sections can be observed and even these peaks are 
rather wide. The situation can be different in so-called block heteropolymers 
consisting of  long regions with different mean concentrations of  components. 
In this case the melting interval can be much wider than in the case of random 
heteropolymers, while the widths of the peaks are approximately the same. 
Another possibility is to consider the melting of open DNA molecules, in 
which case the loop entropy has to be taken into account/1,2) The loop 
entropy term renormalizes the surface energy V, (14) so that V effectively 
increases by a factor 1.7. (9~ This results in 3TA ~ 3To ~ 0.23AT. 

In our calculations we assumed that N is an integer. Physically, it is 
evident that the results will not change if N is not an integer exactly, but is 
close enough to some integral value. In this case the sections that contribute, 
say, to A~TA will melt at different temperatures, depending on their lengths. 
If  T changes by 3T, the energy difference between the helical and coiled states 
for a section of length L changes by a L 3T. The shortest section of  type (A) 
has length ~ V/U1, and thus 3Tmax = U1V -1 3V is the maximal width a 
peak can gain due to a nonintegral N {here 3V = (N - [N])U}. The peak 
will remain essentially unchanged if 3Tmax << ~TA. In the case U1 = U2, 
~ = u~2 = 0.5 this implies 3V<< 12TU/V.  

Finally, let us discuss the accidental fine structure of melting curves that 
is caused by the finite length of a polymer. I f ~  is the probability of a newborn 
melted section and .,4 p is the number of links in the chain, then J / ' ~  is the 
average number of newborn sections and (JV'~) ~/2 is the fluctuation of this 
number. The fluctuation of  ~ is of order 

~ ,,~ La(~,f'gz)~Z/.A/" (65) 

The maximal fluctuations of  ~7 are expected at values of r and s corresponding 
to the peaks of the intrinsic fine structure (i.e., to maxima of  ~ )  or to relatively 
rare but very long sections. In the latter case Eq. (65) may not be applicable 
since it is valid only if J / ' ~  >> 1. 

In the case U~ = U2 = U, ~1 = ~2 = 0.5 Eq. (65) gives 

3~ ~ (V/18UJ/ ' )  ~'2 (66) 
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Compar ing  Eqs. (60) and (66), we see that  the accidental fine structure grows 
with the increase o f  V/U,  while the intrinsic fine structure smoothes down and 
vice versa. The condit ion that  the fluctuation ~7 is negligible compared  to the 
intrinsic variat ion A~/is given by 

(JV'U3/V3) 1/2 >> 1 (67) 

At  the s tandard conditions, V / U  ~ 15, and Eq. (67) requires rather  big 
polymer  lengths (JV" ~ 3 x 105). However,  at low sodium-ion concentra-  
tions, the values o f  Uz and 0-2 increase significantly and the ratio V/U can 
become as small as 6 (or even smaller)/4~ Under  such conditions the intrinsic 
fine structure may  be observable even for  relatively short  sequences 
(JV ~ 2 x 10~). 

7. C O M P U T E R  C A L C U L A T I O N  OF M E L T I N G  C U R V E S  

A study o f  A~A,B,c and 3TA,~,c as functions o f  r, s, N, and ~1 requires 
computer  calculations, which are now in progress. Results will be published 

A'r/ /At 

0.10 

0 . 0 5  l l ] 
0 I I 

2 0  25  

Fig. l. Ground-state differential melting curve for an infinite heteropolymer with a 
random sequence of components. Calculation was performed for the following parameter 
values: N = 119, r + s = 40, r = 0.4, ~2 = 0.6. The peak at r = 20 corresponds to 
U1 = U2, V/U~ ~ 6. 
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elsewhere. In  this work I would like,to show only one ground-sta te  differential 

melt ing curve, which was calculated by I. Simon using Eqs. (13) and (20)-(28). 
The following values of  parameters  were chosen:  ~1 = 0.4, ~2 = 0.6, 
N = 119, r + s = 40, r = 15, 16 ..... 35. The summat ion  over M was cut off 

at M = 200. The whole calculat ion took 37 sec of computer  time. The results 
are shown in Fig. 1. The peak at r = 20 corresponds to U1 = U2 and 
V/U1 ,~ 6 (V/U~ = 5.95). I~ 

A C K N O W L E D G M E N T S  

The author  is grateful to Prof. M. Azbel '  for his advice and constant  

interest in this work, to Prof. A. Isihara for valuable discussions, and  to 

Prof. P. L. Taylor  for his advice and  help during the prepara t ion  of the 

manuscript .  

R E F E R E N C E S  

1. R. W. Wartell and E. W. Montroll, Adv. Chem. Phys. 22:129 (1972). 
2. A. A. Vedenov, A. M. Dykhne, and M. D. Frank-Kamenetskii, Usp. Fiz. Nauk 

105:479 (1971) [Soy. Phys.--Usp. 14:715 (1972)]. 
3. E. W. Montrolt and N. S. Goel, Biopotymers 4:855 (1966). 
4. M. D. Frank-Kamenetskii and Yu. S. Lazurkin, Ann. Rev. Biophys. Bioeng. 3:127 

(1974). 
5. M. Ya. Azbel', Zh. Eksp. Teor. Fiz. Pis'ma Red. 16:183 (1972) [Soy. Phys.--JETP 

Lett. 16:128 (1972)]. 
6. M. Ya. Azbel', Phys. Rev. Lett. 31:589 (1973). 
7. I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 65:1100 (1973) [Soy. Phys.--JETP 38: 545 (1974)]. 
8. A. Vilenkin, Biopolymers 16:1657 (1977). 
9. Yu. L. Lyubchenko, M. D. Frank-Kamenetskii, A. V. Vologodskii, Yu. S. Lazurkin, 

and G. G. Gasue, Jr., Biopolymers 15:1019 (1976). 
10. Mo Ya. Azbel', Invited paper at STATPHYS 13, Ann. Isr. Phys. Soc., 2 (1977). 
11. M. Ya. Azbel', Thermodynamic Decoding of DNA and Double-thread Replicative 

RNA, to be published. 
12. A. Vilenkin, Phys. Rev. B 18, No. 3. 
13. A. A. Vedenov and A. M. Dykhne, Zh. Eksp. Teor. Fiz. 55:375 (1968) [Soy. Phys.-- 

JETP 28:187 (1969)]. 
14. M. Ya. Azbel', Y. Chem. Phys. 62:3635 (1975). 
15. I. Simon and A. Vilenkin, to be published. 

~o V/U ,~ 6 corresponds to Tae -- TAT ~ 100 K. Such values of Tae - TAT have been 
observed at low [Na+]. (See Ref. 4.) 


